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Outline

• General framework.
• Global and local symmetries.
• From classical to quantum field theory.

Essential elements of field theory 

• Building the SM Lagrangian: first principles and 
phenomenological evidence.

• Testing the SM consistency.

The Standard Model (SM)

• Strengths and weaknesses.
• Probing SM predictions at the LHC.

The Standard Model in the LHC era
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The 
Standard 

Model 

• Building the SM Lagrangian: first principles and 
phenomenological evidence
• Steps towards the SM Lagrangian
• Main building blocks
• Main phenomenological consequences

• Testing the SM consistency
• Global fit of precision observables
• Constraining new physics

• SM limits and problematics aspects
.
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The Standard Model of particle physics: the artist rendering 
A very minimal quantum field theory describing 
strong, weak, and electromagnetic interactions, 
based on a local (gauge) symmetry

Strong interactions: gluons →	𝑚! = 0
Electromagnetic interactions: photon → 	𝑚"= 0
Weak interactions: 𝑊± and 𝑍 →	𝑀$, 𝑀% ≠ 0

Due to the presence of a scalar field whose potential 
spontaneously breaks the gauge symmetry of weak 
interactions and gives origin to massive gauge bosons (W,Z)

The Higgs boson (H) is the physical 
particle associated with such field 

SU(3)C x SU(2)L x U(1)Y → SU(3)C x U(1)Q

Let’s build it step by step! 4



Building the Standard Model Lagrangian

Ø Steps towards the SM Lagrangian.
Ø Main building blocks.
Ø Main phenomenological consequences.
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Towards the SM of particle physics
Translating experimental evidence of particle interactions into the right gauge symmetry group: 
one of the most fascinating story in particle physics

q Electromagnetic interactions → Quantum Electrodynamics (QED) – 𝑈(1)&'(
Ø Plenty of phenomenological evidence to go beyond E&M and classical FT very early on: 

Lamb shift in atomic levels, anomalous magnetic moment of the electron (𝒈𝒆), …
Ø The true testing ground of QFT ideas, paved by phenomenological success.
Ø Remarkably tested to this days at lepton and hadron colliders.
Ø Still, not everything can be explained by an exact abelian gauge theory!

q Strong interactions → Quantum Chromodynamics (QCD) - 𝑆𝑈(3))
Ø Evidence for strong force in hadronic interactions.
Ø Gell-Mann-Nishijima quark model interprets hadron spectroscopy.
Ø Need for 3-fold quantum number (color) ↔ hadron spectroscopy, 𝑒"𝑒# → hadrons.
Ø DIS experiments → confirm parton model based on 𝑆𝑈(3)$ .
Ø Exact non abelian gauge theory explains confinement vs asymptotic freedom.
Ø Much more (the whole physics program of hadron colliders!). 6



q Weak interactions – quite puzzling … 

Ø Discovered in neutron 𝜷-decay: 𝑛 → 𝑝 + 𝑒# + 𝜈̅%.
Ø New force: small rates/long lifetimes.
Ø Universal: same strength in both hadronic and leptonic decays: 

Ø 𝑛 → 𝑝	𝑒#𝜈̅%,  𝜇# → 𝑒#𝜈̅%𝜈&, 𝜋# → 𝜇#𝜈̅&, …
Ø Violate parity (P).
Ø Charged currents only left-handed.
Ø Neutral currents not of electromagnetic origin.
Ø First description by Fermi Theory as a four-fermion interaction

Ø Easily accommodate a massive intermediate vector boson

LF =
GF√
2
(p̄γµ(1− γ5)n)(ēγ

µ(1− γ5)νe)

𝐺! → Fermi constant
𝐺! = [𝑚]"#

(in units of 𝑐 = ℏ = 1)

LIV B =
g
√
2
W+

µ J−

µ + h.c.

J−

µ = ūγµ
1− γ5

2
d+ ν̄eγ

µ
1− γ5

2
e

! violates parity (P)

! charged currents only affect left-handed particles (right-handed

antiparticles)

! neutral currents not of electromagnetic nature

! First description: Fermi Theory (1934)

LF =
GF→
2
(p̄γµ(1− γ5)n)(ēγ

µ(1− γ5)νe)

GF → Fermi constant, [GF ] = m−2 (in units of c = h̄ = 1).

! Easely accomodates a massive intermediate vector boson

LIV B =
g
→
2
W+

µ J−

µ + h.c.

with (in a proper quark-based notation)

J−

µ = ūγµ
1− γ5

2
d+ ν̄eγ

µ 1− γ5
2

e

u e

d ν̄e

−→

u e

W

d ν̄eprovided that,

q2 $ M2
W −→

GF→
2
=

g2

8M2
W

𝑞# ≪ 𝑀$
#

𝐺!
2
=
𝑔%#

8𝑀$
# 7



Ø New force with massive mediators → SSB gauge symmetry

Ø 3 gauge bosons (2 charged+1 neutral), chiral interactions → 𝑆𝑈(2)' 
Ø Cannot be the whole story otherwise they would have the same mass upon SSB  
 (but 𝑀( ≠ 𝑀))
Ø Only possibility, without extending to a gauge group that would have many more gauge 

bosons is
 

SU(2)L → U(1)Y
SSB
−→ U(1)Q

𝑌 → hypercharge, 
𝑌 = 𝑄 − 𝑇&

𝑄 → charge (QED)
𝑇& → 𝑆𝑈 2  generator

q Strong, electromagnetic, and weak interactions →	𝑆𝑈(3)?×𝑆𝑈(2)@×𝑈(1)A

𝑈(1)"#$

SU(3)C → SU(2)L → U(1)Y
SSB
−→ SU(3)C → U(1)Q

LSM = LQCD + LEW

LEW = L
ferm
EW + L

gauge
EW + L

SSB
EW + L

Yukawa
EW 8



Strong interactions: Quantum Chromodynamics (QCD)

LQCD =
∑

i

Q̄i(iD/−mi)Qi −
1

4
F a,µνF a

µν

Dµ = ∂µ + igsA
a

µT
a

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν

Exact 𝑆𝑈 3  Yang-Mills theory - 𝑆𝑈(3)) 

Qi =

(

Qi

Qi

Qi

)

Ø 𝑄% → (𝑖 = 1,… , 6 → 𝑢, 𝑑, 𝑠, 𝑐, 𝑏, 𝑡) fundamental representation of 𝑆𝑈(3)& (dim=3) → quark triplets

Ø 𝐴'( → adjoint representation of 𝑆𝑈(3)& (dim = 𝑁) − 1,𝑁 = 3) → 8 massless gluons (gauge fields)
Ø 𝑇( → 𝑆𝑈(3)& generators (Gell-Mann matrices)
Ø 𝑔* → strong coupling constant – gauge coupling of QCD (𝛼* = 𝑔*)/(4𝜋)))

Ø All other fermion fields are	𝑆𝑈(3)& singlets

See lectures by A. Huss
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Electromagnetic and weak interactions: unified into the 
Glashow-Weinberg-Salam theory

Spontaneously broken Yang-Mills theory based on 𝑆𝑈(2)@×𝑈(1)A 

q 𝑆𝑈(2)@ → weak isospin group, gauge coupling 𝒈
Ø 3 generators 𝑇B = ⁄𝜎B 2	(𝜎B Pauli matrices, a= 1,2,3)
Ø 3 gauge bosons: 𝑊C

D,𝑊E
D,𝑊F

D

Ø 𝜓@ =
C
E (1 − 𝛾G)𝜓 fields are doublets of 𝑆𝑈(2)

Ø 𝜓H =
C
E
(1 + 𝛾G)𝜓 fields are singlets of 𝑆𝑈(2)

I𝜓'𝜓( + I𝜓(𝜓' mass terms are 
forbidden since not gauge invariant

q	𝑈(1)A→ weak hypercharge group (Y = 𝑄 − 𝑇F), gauge coupling 𝒈L
Ø  1 generator → each field has a 𝑌 quantum number (charge)
Ø  1 gauge boson: 𝐵D
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Three generations (families) of fermion fields – Summary of quantum numbersThree fermionic generations, summary of gauge quantum numbers:

SU(3)C SU(2)L U(1)Y U(1)Q

Qi
L =

(

uL

dL

) (

cL

sL

) (

tL

bL

)

3 2 1
6

2
3

→ 1
3

ui
R = uR cR tR 3 1 2

3
2
3

diR = dR sR bR 3 1 → 1
3

→ 1
3

Li
L =

(

νeL

eL

) (

νµL

µL

) (

ντL

τL

)

1 2 → 1
2

0

→1

eiR = eR µR τR 1 1 →1 →1

νiR = νeR νµR ντR 1 1 0 0

where a minimal extension to include νiR has been allowed (notice however

that it has zero charge under the entire SM gauge group!)

Last line (right-handed neutrinos) is not part of the SM. Why? More to come …
Interesting to notice that 𝜈+%  has zero charge under the entire SM group!

11



1- Lagrangian of the fermion fields

For each generation (here specialized to the first generation)

L
ferm
EW

= L̄L(iD/)LL + ēR(iD/)eR + Q̄L(iD/)QL + ūR(iD/)uR + d̄R(iD/)dR

With covariant derivative

Dµ = ∂µ − igW a

µT
a
− ig′

1

2
Y Bµ

Lagrangian of fermion fields

For each generation (here specialized to the first generation):

Lferm
EW

= L̄L(iD/)LL+ēR(iD/)eR+ν̄eR(iD/)νeR+Q̄L(iD/)QL+ūR(iD/)uR+d̄R(iD/)dR

where in each term the covariant derivative is given by

Dµ = ∂µ → igW i
µT

i → ig′
1

2
Y Bµ

and T i = σi/2 for L-fields, while T i = 0 for R-fields (i = 1, 2, 3), i.e.

Dµ,L = ∂µ →
ig
√
2

(

0 W+
µ

W−

µ 0

)

→
i
2

(

gW 3
µ → g′Y Bµ 0

0 →gW 3
µ → g′Y Bµ

)

Dµ,R = ∂µ + ig′
1
2
Y Bµ

with

W± =
1√
2

(

W 1
µ ∓ iW 2

µ

)

W
±
µ =

1
√
2

(

W
1

µ ∓ iW
2

µ

)

where 𝑊)± are defined as:

acting on the left/right fields as
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Lferm
EW

can then be written as

Lferm
EW = Lferm

kin + LCC + LNC

where

Lferm
kin = L̄L(i∂/)LL + ēR(i∂/)eR + . . .

LCC =
g→
2
W+

µ ν̄eLγ
µeL +W−

µ ēLγ
µνeL + . . .

LNC =
g

2
W 3

µ [ν̄eLγ
µνeL − ēLγ

µeL] +
g′

2
Bµ [Y (L)(ν̄eLγ

µνeL + ēLγ
µeL)

+ Y (eR)ν̄eRγ
µνeR + Y (eR)ēRγ

µeR] + . . .

where

W± = 1√
2

(

W 1
µ ∓ iW 2

µ

)

↔ mediators of Charged Currents

W 3
µ and Bµ ↔ mediators of Neutral Currents.

⇓

However neither W 3
µ nor Bµ can be identified with the photon field Aµ,

because they couple to neutral fields.

Lferm
EW

can then be written as

Lferm
EW = Lferm

kin + LCC + LNC

where

Lferm
kin = L̄L(i∂/)LL + ēR(i∂/)eR + . . .

LCC =
g→
2
W+

µ ν̄eLγ
µeL +W−

µ ēLγ
µνeL + . . .

LNC =
g

2
W 3

µ [ν̄eLγ
µνeL − ēLγ

µeL] +
g′

2
Bµ [Y (L)(ν̄eLγ

µνeL + ēLγ
µeL)

+ Y (eR)ν̄eRγ
µνeR + Y (eR)ēRγ

µeR] + . . .

where

W± = 1√
2

(

W 1
µ ∓ iW 2

µ

)

↔ mediators of Charged Currents

W 3
µ and Bµ ↔ mediators of Neutral Currents.

⇓

However neither W 3
µ nor Bµ can be identified with the photon field Aµ,

because they couple to neutral fields.

Separating kinetic and interaction (current) terms, ℒ#,ferm can be written as

where

𝑊'± → mediators of charged currents
𝑊'., 𝐵' → mediators of neutral currents

However, neither 𝑊.
'nor 𝐵' can be identified with the photon 

field (𝐴') because they couple to neutral fermions 
13



Rotate 𝑊'. and 𝐵'introducing a weak mixing angle 𝜽𝑾 (a.k.a. Weinberg angle)

𝑊'. =	 sin 𝜃,𝐴' + cos 𝜃,𝑍' 
𝐵' = cos 𝜃,𝐴' − sin 𝜃,𝑍'

Such that the kinetic term is still diagonal and the neutral current Lagrangian becomes

Rotate W 3
µ and Bµ introducing a weak mixing angle (θW )

W 3
µ = sin θWAµ + cos θWZµ

Bµ = cos θWAµ → sin θWZµ

such that the kinetic terms are still diagonal and the neutral current
lagrangian becomes

LNC = ψ̄γµ
(

g sin θWT 3 + g′ cos θW
Y

2

)

ψAµ+ψ̄γ
µ
(

g cos θWT 3 → g′ sin θW
Y

2

)

ψZµ

for ψT = (νeL, eL, νeR, eR,. . . ). One can then identify (Q→ e.m. charge)

eQ = g sin θWT 3 + g′ cos θW
Y

2

and, e.g., from the leptonic doublet LL derive that






g
2 sin θW →

g′

2 cos θW = 0

→ g
2 sin θW →

g′

2 cos θW = →e
→→ g sin θW = g′ cos θW = e

(𝜓 = 𝜈+' , 𝑒' , 𝑒()

𝑒𝑄 = 𝑔 sin 𝜃$𝑇& + 𝑔, cos 𝜃$
𝑌
2

Q identified as the e.m. charge 
Applying Q to any fermion field gives

𝑔 sin 𝜃$ = 𝑔, cos 𝜃$ = 𝑒

Notice:
Ø Charged and neutral current violate P (couple differently to L- and R-handed fields)
Ø Neutral currents are universal (same for all fermion generations) ↔  𝑆𝑈 2  gauge symmetry
Ø No tree-level flavor-changing neutral currents (𝑎𝑐𝑟𝑜𝑠𝑠	𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)
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i

Aµ

j

= →ieQfγ
µ

i

Wµ

j

=
ie

2
√
2sw

γµ(1→ γ5)

i

Zµ

j

= ieγµ(vf → afγ5)

where

vf = →
sw
cw

Qf +
T 3
f

2sW cW

af =
T 3
f

2sW cW

𝑣- = −
𝑠$
𝑐$

𝑄- +
𝑇-&

2𝑠$𝑐$

𝑎- =
𝑇-&

2𝑠$𝑐$

Feynman rules: obtained from tree-level 2- and 3-point correlation functions 

(Vector coupling)

(Axial vector coupling)

You can calculate them!
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2 - Lagrangian of the gauge fields
Lagrangian of gauge fields

Lgauge
EW = →

1

4
W a

µνW
a,µν →

1

4
BµνB

µν

where

Bµν = ∂µBν → ∂νBµ

W a
µν = ∂µW

a
ν → ∂νW a

µ + gεabcW b
µW

c
ν

in terms of physical fields:

Lgauge
EW

= Lgauge
kin + L3V

EW
+ L4V

EW

where

Lgauge
kin = →

1
2
(∂µW

+
ν → ∂νW

+
µ )(∂µW−ν → ∂νW−µ)

→
1
4
(∂µZν → ∂νZµ)(∂

µZν → ∂νZµ)→
1
4
(∂µAν → ∂νAµ)(∂

µAν → ∂νAµ)

L3V
EW = (3-gauge-boson vertices involving ZW+W− and AW+W−)

L4V
EW = (4-gauge-boson vertices involving ZZW+W−, AAW+W−,

AZW+W−, and W+W−W+W−)

Lagrangian of gauge fields

Lgauge
EW = →

1

4
W a

µνW
a,µν →

1

4
BµνB

µν

where

Bµν = ∂µBν → ∂νBµ

W a
µν = ∂µW

a
ν → ∂νW a

µ + gεabcW b
µW

c
ν

in terms of physical fields:

Lgauge
EW

= Lgauge
kin + L3V

EW
+ L4V

EW

where

Lgauge
kin = →

1
2
(∂µW

+
ν → ∂νW

+
µ )(∂µW−ν → ∂νW−µ)

→
1
4
(∂µZν → ∂νZµ)(∂

µZν → ∂νZµ)→
1
4
(∂µAν → ∂νAµ)(∂

µAν → ∂νAµ)

L3V
EW = (3-gauge-boson vertices involving ZW+W− and AW+W−)

L4V
EW = (4-gauge-boson vertices involving ZZW+W−, AAW+W−,

AZW+W−, and W+W−W+W−)

Lagrangian of gauge fields

Lgauge
EW = →

1

4
W a

µνW
a,µν →

1

4
BµνB

µν

where

Bµν = ∂µBν → ∂νBµ

W a
µν = ∂µW

a
ν → ∂νW a

µ + gεabcW b
µW

c
ν

in terms of physical fields:

Lgauge
EW

= Lgauge
kin + L3V

EW
+ L4V

EW

where

Lgauge
kin = →

1
2
(∂µW

+
ν → ∂νW

+
µ )(∂µW−ν → ∂νW−µ)

→
1
4
(∂µZν → ∂νZµ)(∂

µZν → ∂νZµ)→
1
4
(∂µAν → ∂νAµ)(∂

µAν → ∂νAµ)

L3V
EW = (3-gauge-boson vertices involving ZW+W− and AW+W−)

L4V
EW = (4-gauge-boson vertices involving ZZW+W−, AAW+W−,

AZW+W−, and W+W−W+W−)

The 𝑆𝑈(2)0×𝑈(1)1 gauge-field Lagrangian is initially written as:

and then expressed in terms of the physical charged- and neutral-current mediators (𝑊'±, 𝑍',	𝐴') obtaining:

Lagrangian of gauge fields

Lgauge
EW = →

1

4
W a

µνW
a,µν →

1

4
BµνB

µν

where

Bµν = ∂µBν → ∂νBµ

W a
µν = ∂µW

a
ν → ∂νW a

µ + gεabcW b
µW

c
ν

in terms of physical fields:

Lgauge
EW

= Lgauge
kin + L3V

EW
+ L4V

EW

where

Lgauge
kin = →

1
2
(∂µW

+
ν → ∂νW

+
µ )(∂µW−ν → ∂νW−µ)

→
1
4
(∂µZν → ∂νZµ)(∂

µZν → ∂νZµ)→
1
4
(∂µAν → ∂νAµ)(∂

µAν → ∂νAµ)

L3V
EW = (3-gauge-boson vertices involving ZW+W− and AW+W−)

L4V
EW = (4-gauge-boson vertices involving ZZW+W−, AAW+W−,

AZW+W−, and W+W−W+W−)

where
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µ

k

ν
=

→i
k2 →M2

V

(

gµν →
kµkν
M2

V

)

W+
µ

Vρ

W−

ν

= ieCV [gµν(k+ → k−)ρ + gνρ(k− → kV )µ + gρµ(kV → k+)ν ]

W+
µ Vρ

W−

ν
V ′

σ

= ie2CV V ′ (2gµνgρσ → gµρgνσ → gµσgνρ)

where

Cγ = 1 , CZ = →
cW
sW

and

Cγγ = →1 , CZZ = →
c2W
s2W

, CγZ =
cW
sW

, CWW =
1

s2W

Feynman rules:  obtained from tree-level 2-, 3-, and 4-point correlation

𝐶. = 1

𝐶/ = −
𝑐$
𝑠$

𝐶.. = −1

𝐶// = −
𝑐$#

𝑠$#

𝐶./ =
𝑐$
𝑠$

𝐶$$ =
1
𝑠$#

In a particular gauge choice
 (more details discussed later)
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3 - Lagrangian of the scalar field

Introduce one complex scalar doublet of 𝑆𝑈(2)0with 𝑌 = 1/2:

See Lecture 1
The Higgs sector of the Standard Model: SU(2)L → U(1)Y

SSB−→ U(1)Q

Introduce one complex scalar doublet of SU(2)L with Y =1/2:

φ =

(

φ+

φ0

)

→→ LSSB

EW = (Dµφ)†Dµφ− µ2φ†φ− λ(φ†φ)2

where Dµφ = (∂µ − igW a
µT

a − ig′YφBµ), (T a=σa/2, a=1, 2, 3).

The SM symmetry is spontaneously broken when ↔φ〉 is chosen to be (e.g.):

↔φ〉 =
1√
2

(

0

v

)

with v =

(
−µ2

λ

)1/2

(µ2 < 0, λ > 0)

The gauge boson mass terms arise from:

(Dµφ)†Dµφ −→ · · ·+
1

8
(0 v)

(

gW a
µσ

a + g′Bµ

) (

gW bµσb + g′Bµ
)

(

0

v

)

+ · · ·

−→ · · ·+
1

2

v2

4

[

g2(W 1
µ)

2 + g2(W 2
µ)

2 + (−gW 3
µ + g′Bµ)

2
]

+ · · ·

where: Dµφ = (∂µ − igW a
µT

a
− ig′YφBµ) (T a = σa/2, a = 1, 2, 3)

The EW SM gauge symmetry is realized as a spontaneously broken symmetry  by choosing a particular  vacuum 
expectation value (vev) of the field  𝜙 that minimizes the scalar potential, e.g.

The Higgs sector of the Standard Model: SU(2)L → U(1)Y
SSB−→ U(1)Q

Introduce one complex scalar doublet of SU(2)L with Y =1/2:

φ =

(

φ+

φ0

)

→→ LSSB

EW = (Dµφ)†Dµφ− µ2φ†φ− λ(φ†φ)2

where Dµφ = (∂µ − igW a
µT

a − ig′YφBµ), (T a=σa/2, a=1, 2, 3).

The SM symmetry is spontaneously broken when ↔φ〉 is chosen to be (e.g.):

↔φ〉 =
1√
2

(

0

v

)

with v =

(
−µ2

λ

)1/2

(µ2 < 0, λ > 0)

The gauge boson mass terms arise from:

(Dµφ)†Dµφ −→ · · ·+
1

8
(0 v)

(

gW a
µσ

a + g′Bµ

) (

gW bµσb + g′Bµ
)

(

0

v

)

+ · · ·

−→ · · ·+
1

2

v2

4

[

g2(W 1
µ)

2 + g2(W 2
µ)

2 + (−gW 3
µ + g′Bµ)

2
]

+ · · ·

The SSB of he EW SM gauge symmetry 𝑆𝑈(2)@×𝑈(1)A → 𝑈(1)&

Notice: all 𝑆𝑈(2)0×𝑈(1)1 generators are broken for this choice of vacuum configuration, but 𝑄 = 𝑇. + 𝑌 is not  
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The weak gauge boson mass terms arise from 

The Higgs sector of the Standard Model: SU(2)L → U(1)Y
SSB−→ U(1)Q

Introduce one complex scalar doublet of SU(2)L with Y =1/2:

φ =

(

φ+

φ0

)

→→ LSSB

EW = (Dµφ)†Dµφ− µ2φ†φ− λ(φ†φ)2

where Dµφ = (∂µ − igW a
µT

a − ig′YφBµ), (T a=σa/2, a=1, 2, 3).

The SM symmetry is spontaneously broken when ↔φ〉 is chosen to be (e.g.):

↔φ〉 =
1√
2

(

0

v

)

with v =

(
−µ2

λ

)1/2

(µ2 < 0, λ > 0)

The gauge boson mass terms arise from:

(Dµφ)†Dµφ −→ · · ·+
1

8
(0 v)

(

gW a
µσ

a + g′Bµ

) (

gW bµσb + g′Bµ
)

(

0

v

)

+ · · ·

−→ · · ·+
1

2

v2

4

[

g2(W 1
µ)

2 + g2(W 2
µ)

2 + (−gW 3
µ + g′Bµ)

2
]

+ · · ·

where we can read thatAnd correspond to the weak gauge bosons:

W±
µ =

1→
2
(W 1

µ ∓ iW 2
µ) −↔ MW = g v

2

Zµ =
1

√

g2 + g′2
(gW 3

µ − g′Bµ) −↔ MZ =
√

g2 + g′2 v
2

while the linear combination orthogonal to Zµ remains massless and

corresponds to the photon field:

Aµ =
1

√

g2 + g′2
(g′W 3

µ + gBµ) −↔ MA = 0

Notice: using the definition of the weak mixing angle, θw:

cos θw =
g

√

g2 + g′2
, sin θw =

g′
√

g2 + g′2

the W and Z masses are related by: MW = MZ cos θw

while the linear combination orthogonal to 𝑍' remains massless and corresponds to the photon field

And correspond to the weak gauge bosons:

W±
µ =

1→
2
(W 1

µ ∓ iW 2
µ) −↔ MW = g v

2

Zµ =
1

√

g2 + g′2
(gW 3

µ − g′Bµ) −↔ MZ =
√

g2 + g′2 v
2

while the linear combination orthogonal to Zµ remains massless and

corresponds to the photon field:

Aµ =
1

√

g2 + g′2
(g′W 3

µ + gBµ) −↔ MA = 0

Notice: using the definition of the weak mixing angle, θw:

cos θw =
g

√

g2 + g′2
, sin θw =

g′
√

g2 + g′2

the W and Z masses are related by: MW = MZ cos θw

cos 𝜃$ =
𝑔

𝑔# + 𝑔,#
	 , sin 𝜃$ =

𝑔,

𝑔# + 𝑔,#
𝑀$

𝑀/
= cos 𝜃$

Notice: 𝑀$ and 𝑀/ are function of gauge 
couplings (𝑔, 𝑔,) and 𝑣 = ⁄𝜇# 𝜆, as 
expected for a SSB theory
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To identify the physical scalar field of the SM, work in unitary gauge
The scalar sector becomes more transparent in the unitary gauge:

φ(x) =
e

i
v !χ(x)·!τ
→
2

(

0

v +H(x)

)

SU(2)−→ φ(x) =
1→
2

(

0

v +H(x)

)

after which the Lagrangian becomes

L = µ2H2 − λvH3 −
1

4
H4 = −

1

2
M2

HH2 −
√

λ

2
MHH3 −

1

4
λH4

Three degrees of freedom, the χa(x) Goldstone bosons, have been

reabsorbed into the longitudinal components of the W±
µ and Zµ weak

gauge bosons. One real scalar field remains:

the Higgs boson, H, with mass M 2

H = −2µ2 = 2λv2

and self-couplings:

H

H

H= −3iM
2
H
v

H

H

H

H

= −3iM
2
H

v2

such that the Lagrangian only depends on the field 𝑯 (the 𝜒((𝑥) degrees of freedom having been traded for 
the longitudinal component of the massive gauge bosons)
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µ and Zµ weak

gauge bosons. One real scalar field remains:

the Higgs boson, H, with mass M 2

H = −2µ2 = 2λv2

and self-couplings:

H

H

H= −3iM
2
H
v

H

H

H

H

= −3iM
2
H

v2

𝑯 → SM Higgs boson with mass 𝑀3
) = −2𝜇) = 2𝜆𝑣) and self-couplings

The scalar sector becomes more transparent in the unitary gauge:

φ(x) =
e

i
v !χ(x)·!τ
→
2

(

0

v +H(x)

)

SU(2)−→ φ(x) =
1→
2

(

0

v +H(x)

)

after which the Lagrangian becomes

L = µ2H2 − λvH3 −
1

4
H4 = −

1

2
M2

HH2 −
√

λ

2
MHH3 −

1

4
λH4

Three degrees of freedom, the χa(x) Goldstone bosons, have been

reabsorbed into the longitudinal components of the W±
µ and Zµ weak

gauge bosons. One real scalar field remains:

the Higgs boson, H, with mass M 2

H = −2µ2 = 2λv2

and self-couplings:

H

H

H= −3iM
2
H
v

H

H

H

H

= −3iM
2
H

v2
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Note on gauge choice: 𝑅f gauges

Ø Abelian gauge case, for simplicity

Quantization of gauge theories implies choosing a gauge-fixing condition

Gauge fixing : the Rξ gauges. Consider the abelian case:

L = →
1

4
FµνFµν + (Dµφ)∗Dµφ→ V (φ)

upon SSB:

φ(x) =
1√
2
((v + φ1(x)) + iφ2(x))

⇓

L = →
1

4
FµνFµν +

1

2
(∂µφ1 + gAµφ2)

2 +
1

2
(∂µφ2 → gAµ(v + φ1))

2 → V (φ)

Quantizing using the gauge fixing condition:

G =
1√
ξ
(∂µA

µ + ξgvφ2)

in the generating functional

Z = C

∫

DADφ1Dφ2 exp
[∫

d4x

(

L→
1

2
G2

)]

det

(
δG

δα

)

(α →↔ gauge transformation parameter)

Ø Upon SSB

Gauge fixing : the Rξ gauges. Consider the abelian case:

L = →
1

4
FµνFµν + (Dµφ)∗Dµφ→ V (φ)

upon SSB:

φ(x) =
1√
2
((v + φ1(x)) + iφ2(x))

⇓

L = →
1

4
FµνFµν +

1

2
(∂µφ1 + gAµφ2)

2 +
1

2
(∂µφ2 → gAµ(v + φ1))

2 → V (φ)

Quantizing using the gauge fixing condition:

G =
1√
ξ
(∂µA

µ + ξgvφ2)

in the generating functional

Z = C

∫

DADφ1Dφ2 exp
[∫

d4x

(

L→
1

2
G2

)]

det

(
δG

δα

)

(α →↔ gauge transformation parameter)

Gauge fixing : the Rξ gauges. Consider the abelian case:

L = →
1

4
FµνFµν + (Dµφ)∗Dµφ→ V (φ)

upon SSB:

φ(x) =
1√
2
((v + φ1(x)) + iφ2(x))

⇓

L = →
1

4
FµνFµν +

1

2
(∂µφ1 + gAµφ2)

2 +
1

2
(∂µφ2 → gAµ(v + φ1))

2 → V (φ)

Quantizing using the gauge fixing condition:

G =
1√
ξ
(∂µA

µ + ξgvφ2)

in the generating functional

Z = C

∫

DADφ1Dφ2 exp
[∫

d4x

(

L→
1

2
G2

)]

det

(
δG

δα

)

(α →↔ gauge transformation parameter)

Eliminate momentum-dependent 𝜙# contributions to 
𝐴) propagator by cleverly choosing the gauge condition

Gauge fixing : the Rξ gauges. Consider the abelian case:

L = →
1

4
FµνFµν + (Dµφ)∗Dµφ→ V (φ)

upon SSB:

φ(x) =
1√
2
((v + φ1(x)) + iφ2(x))

⇓

L = →
1

4
FµνFµν +

1

2
(∂µφ1 + gAµφ2)

2 +
1

2
(∂µφ2 → gAµ(v + φ1))

2 → V (φ)

Quantizing using the gauge fixing condition:

G =
1√
ξ
(∂µA

µ + ξgvφ2)

in the generating functional

Z = C

∫

DADφ1Dφ2 exp
[∫

d4x

(

L→
1

2
G2

)]

det

(
δG

δα

)

(α →↔ gauge transformation parameter)
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Gauge fixing : the Rξ gauges. Consider the abelian case:

L = →
1

4
FµνFµν + (Dµφ)∗Dµφ→ V (φ)

upon SSB:

φ(x) =
1√
2
((v + φ1(x)) + iφ2(x))

⇓

L = →
1

4
FµνFµν +

1

2
(∂µφ1 + gAµφ2)

2 +
1

2
(∂µφ2 → gAµ(v + φ1))

2 → V (φ)

Quantizing using the gauge fixing condition:

G =
1√
ξ
(∂µA

µ + ξgvφ2)

in the generating functional

Z = C

∫

DADφ1Dφ2 exp
[∫

d4x

(

L→
1

2
G2

)]

det

(
δG

δα

)

(α →↔ gauge transformation parameter)

L→
1

2
G2 = →

1

2
Aµ

(

→gµν∂2 +
(

1→
1

ξ

)

∂µ∂ν → (gv)2gµν
)

Aν

1

2
(∂µφ1)

2 →
1

2
m2

φ1
φ21 +

1

2
(∂µφ2)

2 →
ξ

2
(gv)2φ22 + · · ·

+

Lghost = c̄

[

→∂2 → ξ(gv)2
(

1 +
φ1
v

)]

c

such that:

〈Aµ(k)Aν(→k)〉 =
→i

k2 →m2
A

(

gµν →
kµkν

k2

)

+
→iξ

k2 → ξm2
A

(
kµkν

k2

)

〈φ1(k)φ1(→k)〉 =
→i

k2 →m2
φ1

〈φ2(k)φ2(→k)〉 = 〈c(k)c̄(→k)〉 =
→i

k2 → ξm2
A

Goldtone boson φ2, ↔⇒ longitudinal gauge bosons

L→
1

2
G2 = →

1

2
Aµ

(

→gµν∂2 +
(

1→
1

ξ

)

∂µ∂ν → (gv)2gµν
)

Aν

1

2
(∂µφ1)

2 →
1

2
m2

φ1
φ21 +

1

2
(∂µφ2)

2 →
ξ

2
(gv)2φ22 + · · ·

+

Lghost = c̄

[

→∂2 → ξ(gv)2
(

1 +
φ1
v

)]

c

such that:

〈Aµ(k)Aν(→k)〉 =
→i

k2 →m2
A

(

gµν →
kµkν

k2

)

+
→iξ

k2 → ξm2
A

(
kµkν

k2

)

〈φ1(k)φ1(→k)〉 =
→i

k2 →m2
φ1

〈φ2(k)φ2(→k)〉 = 〈c(k)c̄(→k)〉 =
→i

k2 → ξm2
A

Goldtone boson φ2, ↔⇒ longitudinal gauge bosons

The generating functional of the quantum theory becomes: 

where:

Gauge and scalar propagators in the generic 𝑅4 gauge:

det
𝛿𝐺
𝛿𝛼

Notice: 𝜙#directly talks to the longitudinal 
component of 𝐴), same mass!
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From ℒ'$nno → 𝐷D𝜙 p 𝐷D𝜙 → couplings to gauge bosonsFrom (Dµφ)†Dµφ →→ Higgs-Gauge boson couplings:

Vµ

Vν

H= 2i
M2

V
v
gµν

Vµ

Vν

H

H

= 2i
M2

V
v2

gµν

Notice: The entire Higgs sector depends on only two parameters, e.g.

MH and v

v measured in µ-decay:
v = (

√
2GF )−1/2 = 246 GeV

→→ SM Higgs Physics depends on MH

Notice: the entire scalar sector depends only on two parameters → 𝜇), 𝜆 	or	(𝑣, 𝜆)	or	(𝑀3, 𝑣)

Very constrained paradigm: precision measurements of 𝑴𝑯, 𝒗,	and Higgs-boson 
couplings are the ultimate test of the SM 

Ø 𝑀3, Higgs boson couplings → LHC experiments

Ø 𝑣 → 	𝜇	decay Γµ =
G2

Fm
5
µ

192π3
f(m2

e/m
2

µ)(1 + δRC)

GF
→
2
=

g2

8M2

W

=
1

2v2
−→ v = (2GF )

−1/2

𝑞# ≪ 𝑀$
#
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4 – Yukawa Lagrangian (scalar-fermion interaction)

Fermion masses are generated via gauge-invariant Yukawa-like couplings

Higgs boson couplings to quarks and leptons

The gauge symmetry of the SM also forbids fermion mass terms

(mQi
Qi

Lu
i
R, . . .), but all fermions are massive.

→

Fermion masses are generated via gauge invariant Yukawa couplings:

LY ukawa

EW = −Γij
u Q̄

i
Lφ

cuj
R − Γij

d Q̄
i
Lφd

j
R − Γij

e L̄
i
Lφl

j
R + h.c.

such that, upon spontaneous symmetry breaking:

LY ukawa

EW
= −Γij

u ū
i
L
v +H√

2
uj
R − Γij

d d̄
i
L
v +H√

2
djR − Γij

e l̄
i
L
v +H√

2
ljR + h.c.

= −
∑

f,i,j

f̄ i
LM

ij
f f j

R

(

1 +
H

v

)

+ h.c.

where

M ij
f = Γij

f

v√
2

is a non-diagonal mass matrix.

Such that upon SSB

Higgs boson couplings to quarks and leptons

The gauge symmetry of the SM also forbids fermion mass terms

(mQi
Qi
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R, . . .), but all fermions are massive.

→
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L
v +H√

2
ljR + h.c.

= −
∑

f,i,j

f̄ i
LM

ij
f f j

R

(

1 +
H

v

)

+ h.c.

where

M ij
f = Γij

f

v√
2

is a non-diagonal mass matrix.

Higgs boson couplings to quarks and leptons

The gauge symmetry of the SM also forbids fermion mass terms

(mQi
Qi

Lu
i
R, . . .), but all fermions are massive.

→

Fermion masses are generated via gauge invariant Yukawa couplings:

LY ukawa

EW = −Γij
u Q̄

i
Lφ

cuj
R − Γij

d Q̄
i
Lφd

j
R − Γij

e L̄
i
Lφl

j
R + h.c.

such that, upon spontaneous symmetry breaking:

LY ukawa

EW
= −Γij

u ū
i
L
v +H√

2
uj
R − Γij

d d̄
i
L
v +H√

2
djR − Γij

e l̄
i
L
v +H√

2
ljR + h.c.

= −
∑

f,i,j

f̄ i
LM

ij
f f j

R

(

1 +
H

v

)

+ h.c.

where

M ij
f = Γij

f

v√
2

is a non-diagonal mass matrix.

non-diagonal
“mass” matrix

𝑈'
- , 𝑈(

-

M
D
f = (Uf

L)
†
MfU

f
R Diagonal mass matrix

Upon diagonalization (by unitary transformation UL and UR)

MD = (Uf
L)

†MfU
f
R

and defining mass eigenstates:

f ′ i
L = (Uf

L)ijf
j
L and f ′ i

R = (Uf
R)ijf

j
R

the fermion masses are extracted as

LY ukawa

EW
=

∑

f,i,j

f̄ ′ i
L [(Uf

L)
†MfU

f
R]f

′ j
R

(

1 +
H

v

)

+ h.c.

=
∑

f,i,j

mf

(

f̄ ′
Lf

′
R + f̄ ′

Rf
′
L

)
(

1 +
H

v

)

f

f

H = →imf

v
=→iyt

Mass eigenstates
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Upon diagonalization (by unitary transformation UL and UR)

MD = (Uf
L)

†MfU
f
R

and defining mass eigenstates:

f ′ i
L = (Uf

L)ijf
j
L and f ′ i

R = (Uf
R)ijf

j
R

the fermion masses are extracted as

LY ukawa

EW
=

∑

f,i,j

f̄ ′ i
L [(Uf

L)
†MfU

f
R]f

′ j
R

(

1 +
H

v

)

+ h.c.

=
∑

f,i,j

mf

(

f̄ ′
Lf

′
R + f̄ ′

Rf
′
L

)
(

1 +
H

v

)

f

f

H = →imf

v
=→iyt

Rotating to the “mass” basis

modifies the charge-currents Lagrangian by a matrix of flavor-mixing couplings: In terms of the new mass eigenstates the quark part of LCC now reads

LCC =
g→
2
ū′ i
L [(U

u
L)

†Ud
L]γ

µdjLW
+
µ + h.c.

where

VCKM = (Uu
L)

†Ud
L

is the Cabibbo-Kobayashi-Maskawa matrix, origin of flavor mixing in the

SM.

⇓

see G. Buchalla’s lectures at this school

In terms of the new mass eigenstates the quark part of LCC now reads

LCC =
g→
2
ū′ i
L [(U

u
L)

†Ud
L]γ

µdjLW
+
µ + h.c.

where

VCKM = (Uu
L)

†Ud
L

is the Cabibbo-Kobayashi-Maskawa matrix, origin of flavor mixing in the

SM.

⇓

see G. Buchalla’s lectures at this school

Cabibbo-Kobayashi-Maskawa matrix

Ø Why there is no CKM for leptons in the SM?

Very intriguing: flavor physics has its origin in the scalar sector of the 
SM, and follows from the mechanism that generates fermion masses.
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Testing the EW SM consistency

Ø Including quantum corrections.
Ø Global fits of EW precision observables.
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Standard Model – Quantum corrections

The SM Lagrangian is made of renormalizable dim=4 structures (all of them!)
Standard Model renormalization: main results

The SM Lagrangian is made of renormalizable field structures,

LSM = LQCD + LEW

= Lferm
EW

+ Lgauge
EW

+ LSSB

EW
+ LY ukawa

EW

where,

LQCD − ψ̄(φ/→m)ψ , ψ̄A/ψ ,
1

4
Ga,µφGa

µφ

Lferm
EW

− ψ̄L(φ/)ψL , ψ̄LV/ψL

Lgauge
EW

−
1

4
F a,µφF a

µφ ,
1

4
BµφBµφ

LSSB

EW
− φµ∂φµ∂, µ

2∂2, ∂4

LY ukawa

EW
− ψ̄LHψR

The systematic procedure outlined in these lectures will apply with extra

constraints imposed by the presence of a partially spontaneously broken

gauge symmetry.

Standard Model renormalization: main results

The SM Lagrangian is made of renormalizable field structures,

LSM = LQCD + LEW

= Lferm
EW

+ Lgauge
EW

+ LSSB

EW
+ LY ukawa

EW

where,
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1

4
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1

4
F a,µφF a

µφ ,
1

4
BµφBµφ

LSSB

EW
− φµ∂φµ∂, µ

2∂2, ∂4

LY ukawa

EW
− ψ̄LHψR

The systematic procedure outlined in these lectures will apply with extra

constraints imposed by the presence of a partially spontaneously broken

gauge symmetry.

See Lecture 1

The systematic procedure outlined in these lectures will apply with extra constraints 
imposed by the presence of a partially spontaneously broken gauge symmetry. 27



The set of fundamental parameters of the SM Lagrangian is:The set of fundamental parameters of the SM Lagrangian is:

gs,0 , g0 , g
→

0 , µ0 , λ0 , yf,0 , V
ij
0

here taken as bare parameters. Thanks to relations induced by the

symmetries of the theory, e.g.

e = g sin φW = g→ cos φW − e =
gg→

√

g2 + g→2

MW =
gv

2
, MZ =

v
√

g2 + g→2

2
−

MW

MZ
=

g
√

g2 + g→2
=

e

g→
= cos φW

we can trade them for other or “better” sets of input parameters, for

example:

gs,0 , e0 , MW,0 , MZ,0 , MH,0 , mf,0 , V
ij
0

and switch to the corresponding set of renormalized or physical parameters

upon imposing suitable renormalization conditions.

→ Relations like MW /MZ = cos φW will automatically be finite but

corrections depend on input parameters (e.g. mt, MH) − natural relations.

Need to specify renormalization scheme and use consistency.
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we can trade them for other or “better” sets of input parameters, for

example:

gs,0 , e0 , MW,0 , MZ,0 , MH,0 , mf,0 , V
ij
0

and switch to the corresponding set of renormalized or physical parameters

upon imposing suitable renormalization conditions.

→ Relations like MW /MZ = cos φW will automatically be finite but

corrections depend on input parameters (e.g. mt, MH) − natural relations.

Need to specify renormalization scheme and use consistency.

and switch to the corresponding set of renormalized or physical parameters upon imposing 
suitable renormalization conditions.

“natural” relation: they will be finite, but 
corrections depend on input parameters
(𝒎𝒕, 𝑴𝑯, … )
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Renormalization conditions

Ø QCD:  in the absence of a mass scale,  use MS scheme or minimal subtraction scheme, i.e. subtract 
just pole parts of each divergent proper vertex.

Ø EW: use procedure illustrated in Lecture 1 for a scalar λ𝜙6 toy model → on-shell subtraction scheme.
Ø Mass/coupling renormalization

Ø Field renormalization

Ø Impose renormalization conditions (traditionally) of the form (“on-shell” conditions):

Definitions and renormalization conditions

QCD − in the absence of a mass scale, use MS scheme or minimal

subtraction scheme, i.e. subtract just pole parts of each divergent proper

vertex.

EW − use procedure illustrated in this lecture for a scalar gφ4 toy model

− on-shell subtraction scheme.
• mass/coupling renormalization:

M2
W,0 = M2

W + ◃M2
W , . . . , mf,0 = mf + ◃mf , V

ij
0 = V ij + ◃V ij

• field renormalization:

W±

0 =
−
ZWW± ,

(

Z0

A0

)

=

( −
ZZZ

−
ZZA

−
ZAZ

−
ZAA

)(

Z

A

)

. . .

where, the following renormalization conditions are traditionally adopted:

◃M2
W = Re[ΣW

T (M2
W)] , ◃ZW = →Re[ΣW −

T (M2
W )] , . . .

and similar ones for other vector+scalar and field renormalization

constants → the bulk of corrections are in the self-energies!
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Definitions and renormalization conditions

QCD − in the absence of a mass scale, use MS scheme or minimal

subtraction scheme, i.e. subtract just pole parts of each divergent proper

vertex.

EW − use procedure illustrated in this lecture for a scalar gφ4 toy model

− on-shell subtraction scheme.
• mass/coupling renormalization:

M2
W,0 = M2

W + ◃M2
W , . . . , mf,0 = mf + ◃mf , V

ij
0 = V ij + ◃V ij

• field renormalization:

W±

0 =
−
ZWW± ,

(

Z0

A0

)

=

( −
ZZZ

−
ZZA

−
ZAZ

−
ZAA

)(

Z

A

)

. . .

where, the following renormalization conditions are traditionally adopted:

◃M2
W = Re[ΣW

T (M2
W)] , ◃ZW = →Re[ΣW −

T (M2
W )] , . . .

and similar ones for other vector+scalar and field renormalization

constants → the bulk of corrections are in the self-energies!
Once expressed in terms of the renormalized parameters and fields, any physical observable is finite and can 
be calculated at the proper perturbative order in QCD+EW and compared with experimental results.

𝛼 0 =
𝑒#

4𝜋
Thomson 

limit 𝑞# → 0
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Global fits of precision measurements

§ The symmetry structure of the Standard Model defines specific relations among couplings 
and masses, such that a minimal set of parameters can be identified.

§ The renormalizability of the theory assures that tree-level relations are modified by finite 
calculable corrections.

§ Precision measurements of masses and couplings via multiple observables:
§ Test the consistency of the theory at the quantum level
§ Indirectly probe new physics via virtual effects

Very successful history!
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The last successful story

Global fits of precision EW observables gave us strong indications of where to find the 
SM Higgs boson and we now use its mass as one of the EW precision observables of 
the EW global fit to constrain new physics.
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Global fits of EW precision observables – general strategy

Ø Pick a minimal set of input parameters to SM predictions, e.g.
Ø 𝛼, 𝐺!,𝑀7,	𝑀3, 𝑚9, 𝑚:, 𝑉&;<, 𝛼* → 𝛼−scheme
Ø 𝑀,, 𝐺!,𝑀7,	𝑀3, 𝑚9, 𝑚:, 𝑉&;<, 𝛼* → 𝑀,−scheme

Ø The best measured ones (𝛼, 𝐺!) are fixed, the others are floated.

Ø Compute EW precision observables (EWPO), including all known higher-order quantum corrections
Ø 𝑍-pole observables (LEP/SLD):Γ7, sin)𝜃=::, 𝐴>, 𝐴!?, …
Ø 𝑊-observables (LEP II, Tevatron, LHC): 𝑀,, Γ,
Ø 𝑚9, 𝑀3, sin)𝜃=:: (Tevatron/LHC)

Ø Perform best fit to EW precision data (EWPD) through different fitting procedures and compare with 
experimental measurements.

Ø Beyond SM: parametrize new physics effects on EWPO and constrain deviations from SM in terms of 
chosen parameters. Examples:
Ø Oblique parameters: S,T,U, …
Ø SM effective field theory (SMEFT) → Wilson coefficients 32



EW Observables: Theoretical parametrization

• Ex: Z-pole observables:

10

Ø Analytic theoretical predictions of Z and W boson observables.

Ø Functions of all the parameters of the model (masses, couplings) through SM quantum 
corrections 
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For MW we combine:
q All LEP 2 measurements 
q Previous Tevatron average
q ATLAS and LHCb early measurements
q CDF [MW=(80.4335±0.0094) GeV]
q ATLAS [MW=(80.3665±0.016) GeV]
q CMS [MW=(80.3602±0.010) GeV]

MW = 80.366 ± 0.0080 GeV (without CDF)
          80.356 ±	0.0045 GeV (from fit)

For mt we combine:
q 2016 Tevatron combination
q ATLAS  Run 1 and early Run2 results
q CMS Run 1 and early Run 2 results
q CMS l+j [mt=(171.77±0.38) GeV]
q CMS l+j boosted [mt=(173.06±0.83) GeV]
q ATLAS l+j boosted [mt=172.95±0.53) GeV

mt = 172.31 ±	0.32 GeV 
        172.38 ±	0.31 GeV (from fit)

J. de Blas et al. 2204.04204, updated
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Highlighting sensitivity to anomalies

A recent challenge: CDF new MW measurement
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Criticality (λ → 0) condition reached for Λ≈1010−1012 GeV. 
Is this a signal of NP below the Planck scale? 

Uncertainty dominated by 
central values and errors 
for top-quark mass and 
strong coupling constant

CMS, 1904:05237: 
Combined fit of 𝑀2 and 𝛼3: 
effect of correlations

Far-reaching effects of EW precision fits: SM vacuum stability

G Hiller et al. 
arXiv:2401.08811
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Beyond the SM: {S,T,U}
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In view of the significant discrepancy between the SM
prediction and the experimental average for MW , we dis-
cuss next the implications of the new Tevatron result on
scenarios of NP beyond the SM. In particular we discuss
the case of NP models which mainly introduce sizable
EW oblique corrections (here denoted as oblique models)
and the case in which NP is described at the EW scale
by more general e!ective interactions, taking as proto-
type example the dimension-six SM E!ective Field The-
ory (SMEFT). Let us first consider a class of NP models
in which the dominant contributions to EWPO are ex-
pected to arise as oblique corrections, i.e. via modifica-
tions of the EW gauge-boson self energies, and can thus
be parameterized in terms of the S, T , and U parameters
introduced in Ref. [47, 48] (or equivalently by the ω1,2,3
parameters introduced in refs. [49–51], although, for the
sake of brevity, we consider here only the former set of
parameters). The explicit dependence of the EWPO on
S, T , and U can be found in appendix A of Ref. [52].
If one assumes NP contributions to U to be negligible,
then a prediction for MW can be obtained from all other
EWPO, as reported in Table I, and could reduce the SM
discrepancy with the experimental value of MW to a ten-
sion at the 1.5 ε level. This scenario, U → S, T , is ex-
pected in extensions with heavy new physics where the
SM gauge symmetries are realized linearly in the light
fields, in which case U is generated by interactions of
mass dimension eight, and is then suppressed with re-
spect to S and T , which are given by dimension-six in-
teractions. Alternatively, to describe scenarios where siz-
able contributions to U are generated, we also consider
the case where this parameter is left free. 4 In this case,
since U is only very loosely constrained by ”W , MW can-
not be predicted with a reasonable accuracy. At the same
time, this means that the apparent discrepancy with the
new MW measurement can be solved by a nonvanishing
U parameter. In Tables III and VII we report the results
of a global fit, including MW , for the oblique parame-
ters, while the corresponding probability density func-
tions (p.d.f.) are presented in Figs. 2 and 4. We also
report the value of the Information Criterion (IC) [54] of
the fits, compared to the SM one. The posterior for the
EWPO is reported in Tables IV and IX.

Result Correlation Result Correlation
(ICST/ICSM = 25.0/80.2) (ICSTU/ICSM = 25.3/80.2)

S 0.100± 0.073 1.00 0.005± 0.096 1.00
T 0.202± 0.056 0.93 1.00 0.040± 0.120 0.91 1.00
U → → → 0.134± 0.087 →0.65 →0.88 1.00

TABLE III. Results of the global fit of the oblique parameters
to all EWPO in the standard average scenario.

4 The STU results can also be used to derive constraints in terms
of the three combinations of four dimension-six oblique operators
that a!ect EWPO, namely S, T,W , and Y [53], via their relation
with the ω1,2,3 parameters [53].

We then relax the assumption of dominant oblique NP
contributions and consider generic heavy NP within the
formalism of the dimension-six SMEFT. Here we work
in the so-called Warsaw basis [55] assuming fermion uni-
versality and, as in the fits presented above, we use the
{ϑ, Gµ,MZ} EW input scheme [56]. In the Warsaw ba-
sis, there are a total of ten operators that can modify the
EWPO at leading order, but only eight combinations of
the corresponding Wilson coe#cients can be constrained
by the data in Table II [57, 58]. Using the notation of [55],
these combinations can be written as, e.g. [57]

Ĉ(1)
ωf

=C(1)
ωf

↑ Yf

2
CωD, f = l, q, e, u, d, (6)

Ĉ(3)
ωf

=C(3)
ωf

+
c2
w

4s2
w

CωD +
cw
sw

CωWB , f = l, q, (7)

Ĉll =
1

2
((Cll)1221 + (Cll)2112) = (Cll)1221, (8)

where sw, cw are the sine and cosine of the weak mix-
ing angle, Yf denotes the fermion hypercharge and we
have absorbed the dependence on the cut-o! scale of the
SMEFT, $, in the Wilson coe#cients, i.e. the above co-
e#cients carry dimension of [mass]→2. Furthermore, the
e!ective EW fermion couplings always depend on Ĉll via
the following combinations, fixed by the corresponding
fermionic quantum numbers (see e.g. [59]),

Ĉ(3)
ωf

↑ c2
w

2s2
w

Ĉll and Ĉ(1)
ωf

+ Yf Ĉll, (9)

such that the e!ects of Ĉll cannot be separated from
other operators using only Z-pole observables. The flat
direction can be broken by the W -boson mass, which de-

pends on Ĉ(3)
ωl

↑ Ĉll/2, or any observable sensitive to its
value, e.g. the W -boson width ”W . The comparatively
low precision of the experimental measurement of ”W

(↓ 2%) thus results in a weak prediction for MW from
the SMEFT fit, with an uncertainty somewhat below 2
GeV5, see Table I, which can easily fit the experimental
measurement, via a non-zero value of the combination

Ĉ(3)
ωl

↑ Ĉll/2. Indeed, as can be seen in Tables V and
VIII for the standard and conservative scenarios, respec-
tively, the two operators involved in the combination are

strongly correlated between them, but also with Ĉ(1)
ωl

.
The latter correlation can be understood from the fact
that the combination Ĉ(1)

ωl
+ Ĉ(3)

ωl
is the one that directly

corrects the left-handed electron couplings, which is mea-
sured to the permil level. The extraction of this coupling
from data, however, is typically correlated with the one

5 This only accounts for the SMEFT parametric and SM intrinsic
uncertainties but neglects the uncertainty associated to higher-
order e!ects in the SMEFT, e.g. from dimension-eight contribu-
tions, which could be evaluated via the methods of [60].

2

FIG. 1. Posterior from a global fit of all EWPO in the SM in the mt vs. MW (top) and sin2 ωlepte! vs. MW (bottom) planes,
superimposed to the posteriors obtained omitting di!erent observables from the fit in the standard average scenario. Dark
(light) regions correspond to 68% (95%) probability ranges. Direct measurements are shown in grey. The corresponding results
in the conservative average scenario are presented in Figure 3.

obtaining as new average:2

MW = 80.4133± 0.0080 GeV. (5)

As in the top-quark mass case, there is however a sig-
nificant tension between the new CDF measurement and
the other measurements that enter in the calculation of
Eq. (5), with ω2/ndof = 3.59. Therefore, in a conserva-
tive average, we inflate the error on MW to 0.015 GeV.
We then perform a series of fits to the di!erent EWPO

using both the standard (see Eqs. 4 and 5) and conser-
vative assumptions for the uncertainties of the top-quark
and W -boson masses. 3 (Although we will discuss both
scenarios throughout the text, in most of the tables and
figures in the main text we will report the results per-
taining to the standard average. The results for the con-
servative average scenario are shown in the appendix.)
In particular, we are interested in comparing the new
averages with the corresponding predictions obtained in
the SM. For that purpose we first perform a pure SM fit
of all EWPO, excluding the experimental input for MW

2 We observe that the result of the combination does not depend
strongly on the value of the common uncertainty between 0 and
6.9 MeV, the total CDF systematic uncertainty [2]. In particu-
lar, the combined uncertainty ranges between 7.7 and 8.4 MeV,
whereas the central values can change by slightly less than 1 ω.
Thus, waiting for an o!cial combination of LHC and TeVatron
results, we take the result in Eq. 5 as our best estimate of MW .

3 Unlike in Ref. [5], we do not consider an inflated uncertainty
for the Higgs-boson mass in the conservative scenario since, as
noted in that reference, this has little impact on the output of
the EW fit. We thus use mH = (125.21 ± 0.12) GeV in all the
fits presented here.

and, from the posterior of such fit, we compute the SM
prediction for MW . The results are shown in Table I,
where we also compare with the combined MW values in
each scenario via the 1D pull, computed as explained in
Ref. [5]. As it is apparent, there exists a significant 6.5ε
discrepancy with the SM in the standard average, which
persists at the level of 3.7ε even in the conservative sce-
nario, due to the large di!erence between the new CDF
measurement and the SM prediction.

Model Pred. MW [GeV] Pull Pred. MW [GeV] Pull
standard average conservative average

SM 80.3499± 0.0056 6.5ε 80.3505± 0.0077 3.7ε
ST 80.366± 0.029 1.6ε 80.367± 0.029 1.4ε
STU 80.32± 0.54 0.2ε 80.32± 0.54 0.2ε

SMEFT 80.66± 1.68 →0.1ε 80.66± 1.68 →0.1ε

TABLE I. Predictions and pulls for MW in the SM, in the
oblique NP models and in the SMEFT, using the standard
and conservative averaging scenarios. The predictions are
obtained without using the experimental information on MW .
See text for more details.

In Tables II and VI we present, in addition to the
experimental values for all EWPO used, the posterior
from the global fit, the prediction of individual parame-
ters/observables obtained omitting the corresponding ex-
perimental information, the indirect determination of SM
parameters obtained solely from EWPO, and the full pre-
diction obtained using only the experimental information
on SM parameters. For the individual prediction, indi-
rect determination and for the full prediction we also
report the pull for each experimental result. In this re-
gard, from the individual indirect determination of the
SM parameters in Table II, one can observe how the ten-

U=0, (S,T) reabsorb impact of MW U≠0, U reabsorb impact of MW

“standard”

“conservative”



Beyond the SM: SMEFT (d=6)
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THE SMEFT

● Most general gauge-invariant Lagrangian built 

with SM fields up to dimension d (here d=6)

● Some relevant operators in the “Warsaw 

basis”:
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Rome, 10/5/2022

MW IN THE SMEFT

● Eight independent combinations of dim. 6 

operators contribute to EWPO. In the 

Warsaw basis:

● Again, one independent combination enters 

only MW and Gw, namely:           ; very loose 

prediction for MW from Gw

Zff/Wff 
vertex 

corrections

W/Z 
propagators S,T

GF

Only 8 independent combinations enter EWPO

Fitting all operators at the time:

• EW observables can constrain 8 out of 10 Ci’s.
• Significant effects on                                  .

Fitting one operator at the time:

• Higgs and top observables can lift the degeneracy.                                  

Analysis in progress!

absorbed by the rest Ci’s.

Global Fit: SMEFT
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Global fit of all coefficients Fit of individual coefficients

No substantial impact of new mt and MW measurements, within uncertainty of the fit.

Adding Higgs and top observables will lift the degeneracy

All 10 coefficients constrained independently by the global fit

Fitting all operators at the time:

• EW observables can constrain 8 out of 10 Ci’s.
• Significant effects on                                  .

Fitting one operator at the time:

• Higgs and top observables can lift the degeneracy.                                  

Analysis in progress!
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